
International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

83 | P a g e
International Journal of Informatics Technology (INJIT)

Test Automation in Microservices Architecture with AI: Strategies, Tools,

and Best Practices

William Clark

Department of Information Technology, Horizon Institute, Australia

william.clark@horizoninstitute.edu

* Corresponding Author

ABSTRACT

Microservices architecture has become a dominant approach for building

modern, scalable, and maintainable applications. However, this architectural

style introduces unique challenges for quality assurance, particularly in

testing. This article delves into the complexities of test automation in

microservices architecture, covering key strategies, tools, and best practices.

We explore different levels of testing, such as unit, integration, end-to-end,

and contract testing, and their specific roles in microservices. Additionally,

we analyze the tools available for test automation, the metrics for measuring

test effectiveness, and the best practices for maintaining a reliable test suite.

By providing comprehensive insights and detailed tables, this article aims to

serve as a practical guide for QA professionals and developers working with

microservices.

KEYWORDS

 Microservices,

Test Automation,

Continuous Integration,

Testing Strategies,

Testing Tools,

Best Practices

This is an open-access article under the CC–BY-SA license

1. Introduction

Microservices architecture decomposes an application into loosely coupled, independently deployable

services. This approach offers numerous benefits, including scalability, flexibility, and faster deployment

cycles. However, the distributed nature of microservices also introduces significant challenges for software

testing. Traditional testing methods often fall short in addressing the unique needs of microservices, such as

ensuring service-to-service communication reliability, managing test environments for numerous services,

and maintaining test data consistency.

Test automation becomes crucial in overcoming these challenges, ensuring that each microservice

functions correctly both in isolation and as part of the larger system. Automated testing in microservices

architecture involves multiple testing levels—unit tests to validate individual components, integration tests

to verify service interactions, end-to-end tests to ensure system functionality, and contract tests to confirm

compliance between services.

This article explores advanced strategies for implementing test automation in a microservices

environment, the tools best suited for each testing level, and the best practices for maintaining a robust and

efficient automated testing pipeline. The following sections provide in-depth insights supported by detailed

tables that summarize key aspects of test automation in microservices.

The adoption of microservices architecture has become increasingly prevalent in modern software

systems due to its ability to break down complex applications into smaller, independently deployable

services. However, this architectural shift brings forth a new set of challenges for Quality Assurance (QA)

http://journal.uad.ac.id/index.php/JIFO/index
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

84 | P a g e
International Journal of Informatics Technology (INJIT)

teams, particularly in the realm of testing. The decentralized nature of microservices requires specialized

testing strategies that are distinct from traditional monolithic applications.

Test automation plays a critical role in the efficient management of testing within microservices

environments. It not only ensures the quality and reliability of individual services but also guarantees the

correct functioning of the entire system as a whole. This paper delves into the strategies, tools, and best

practices required for successfully implementing test automation in microservices architecture.

2. Method

This paper follows a systematic approach to explore test automation strategies for microservices. The

research is based on a combination of literature review, case studies from leading companies in the

microservices domain, and interviews with industry experts in the field of software testing and DevOps. The

methodology involves:

Literature Review: Reviewing existing academic research, white papers, and technical blogs on

microservices testing and automation tools.

Case Studies: Analyzing how organizations have implemented test automation in their microservices

environments. This includes both success stories and challenges faced.

Expert Interviews: Conducting interviews with professionals working in DevOps and QA teams to gather

insights on the tools, strategies, and best practices they employ for automated testing in microservices.

The goal of this methodology is to gather a holistic view of test automation practices, providing practical

guidance for teams seeking to implement or improve automation in microservices.

3. Results and Discussion

3. Test Automation Strategies for Microservices

Test automation in microservices requires a shift in approach compared to traditional monolithic

applications. Key strategies for test automation in microservices include:

3.1. Service-Level Testing

Automating tests at the service level is essential in microservices. These tests focus on verifying the

functionality of individual microservices before they interact with other services. Strategies for service-level

testing include: Unit Testing: Writing automated unit tests for each microservice to verify its individual

functionality. Contract Testing: Ensuring that the contracts (APIs) between services are adhered to and

tested for compatibility. Mocking and Stubbing: Using mock services or stubs to isolate a microservice from

dependencies during testing.

3.2. Integration Testing

Since microservices often interact with one another, integration testing ensures that they communicate

correctly. This can be achieved through: Service Virtualization: Using virtualized versions of external services

or databases to simulate interactions between services. End-to-End Testing: Automating full workflows that

span multiple microservices to test the overall system behavior.

3.3. Continuous Integration and Continuous Deployment (CI/CD)

In a microservices environment, automating tests within a CI/CD pipeline ensures that code is

continuously validated. This includes: Running automated tests (unit, integration, and end-to-end) on each

commit. Using feature flags and canary deployments to gradually roll out changes and test them in

production-like environments.

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

85 | P a g e
International Journal of Informatics Technology (INJIT)

3.4. Performance and Load Testing

Performance testing is crucial to ensure that microservices can handle varying loads and scale as needed.

Techniques include: Load Testing: Simulating a high volume of requests to test how well the service

performs under stress. Stress Testing: Pushing the system to its limits to identify breaking points. Chaos

Engineering: Introducing failures in a controlled manner to ensure that the system can self-heal and

maintain reliability under adverse conditions.

4. Tools for Test Automation in Microservices

Several tools are designed to facilitate test automation in microservices environments. These tools vary

based on the type of testing and the architecture of the microservices. Key tools include:

4.1. Testing Frameworks

JUnit / TestNG: Commonly used for unit testing of individual services.

Mockito: A framework for mocking dependencies during unit and integration testing.

Postman: Used for API testing and validating microservice interactions.

WireMock: A tool for service virtualization to simulate dependent microservices.

4.2. CI/CD Tools

Jenkins: A popular tool for automating the execution of tests within a CI/CD pipeline.

GitLab CI: Offers native support for microservices, including automated testing and deployment

workflows.

CircleCI: Known for its support in continuous testing in microservices architectures.

4.3. Load Testing and Monitoring

JMeter: A powerful tool for load testing microservices.

K6: A modern load testing tool designed for microservices.

Prometheus & Grafana: For monitoring and visualizing the health of microservices in real-time.

Tables Section

Table 1. Levels of Testing in Microservices Architecture

Level of
Testing

Purpose Scope Example Tools Challenges

Unit Testing
Validates individual
components or functions

Single service JUnit, NUnit, Mocha High number of tests

Integration
Testing

Verifies communication
between services

Multiple
services

Postman, RestAssured,
WireMock

Complex service
dependencies

End-to-End
Testing

Ensures overall system
functionality

Entire
application

Selenium, Cypress,
Puppeteer

High maintenance
cost

Contract
Testing

Ensures service contract
compliance

Service-to-
service

Pact, Spring Cloud
Contract

Maintaining accurate
contracts

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

86 | P a g e
International Journal of Informatics Technology (INJIT)

Table 2. Test Automation Tools for Microservices

Tool
Name

Supported
Testing Level

Key Features Pros Cons

JUnit Unit
Java-based, extensive
community support

Easy to use, integrates
with CI/CD

Java-specific

Postman Integration
API testing, automation
with Newman

User-friendly, supports
collaboration

Limited for complex
workflows

Selenium End-to-End Browser automation Wide language support
High setup and
maintenance overhead

Pact Contract
Supports consumer-driven
contract testing

Ensures clear service
contracts

Limited to HTTP
interactions

WireMock
Integration, End-
to-End

API mocking, supports
stubbing and verification

Reduces dependency on
external services

Can be complex to set
up

Table 3. Common Test Strategies for Microservices

Strategy Description Benefits Challenges

Service Virtualization
Uses virtual services to simulate
real ones

Enables isolated
testing

Requires accurate simulation
models

Consumer-Driven
Contracts

Contracts defined by service
consumers

Reduces integration
errors

Requires coordination
between teams

Shift-Left Testing
Testing starts early in the
development cycle

Early detection of
issues

May increase initial
development costs

Shift-Right Testing Testing continues in production
Real-world scenario
validation

Potential impact on end-
users

Test Automation
Pyramid

Balance of unit, integration, and
end-to-end tests

Efficient test
coverage

Finding the right balance for
the pyramid

Table 4. Key Components of Contract Testing

Component Description Example Tools Benefits

Consumer
Contracts

Define expectations of service
consumers

Pact, Spring Cloud
Contract

Clear communication between
services

Provider
Contracts

Define what the service
provider offers

Pact, Spring Cloud
Contract

Ensures service reliability

Verification
Process

Validates that contracts are
fulfilled

Pact Broker Automated contract validation

Mocking
Simulates service behaviors for
testing

WireMock, Mockito
Reduces dependencies on live
services

Table 5. Challenges in Automating Microservices Testing

Challenge Description Mitigation Strategies

Test Data Management
Managing consistent test data across
services

Use of synthetic data, data
anonymization

Test Environment Setup
Complexity in setting up test
environments

Use of containers, service
virtualization

Service Dependency
Management

Interdependent services complicate
testing

Dependency inversion, service
stubs

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

87 | P a g e
International Journal of Informatics Technology (INJIT)

Challenge Description Mitigation Strategies

Monitoring and Logging Difficulty in tracking tests across services
Centralized logging, distributed
tracing

Flaky Tests
Tests fail intermittently due to
environment issues

Test isolation, environment
stabilization

Table 6. Best Practices for Test Automation in Microservices

Best Practice Description

Adopt a Test Automation Pyramid Focus more on unit and integration tests

Implement Continuous Testing Integrate testing into CI/CD pipelines

Use Service Virtualization Isolate services for independent testing

Maintain Clear Contracts Ensure all services adhere to defined contracts

Monitor Test Flakiness Regularly analyze and stabilize flaky tests

Table 7. Key Metrics for Measuring Test Effectiveness

Metric Name Description Importance

Test Coverage Percentage of code paths tested Ensures thorough testing

Test Execution Time Time taken for test suite execution Optimizes testing duration

Flaky Test Rate Percentage of tests that fail intermittently Indicates reliability of tests

Defect Leakage Rate Defects found in production Measures test effectiveness

Automation Coverage Proportion of test cases that are automated Identifies gaps in test automation

Table 8. Tools for Service Virtualization

Tool Name Supported Protocols Key Features Pros

WireMock HTTP, HTTPS
Flexible API stubbing and
verification

Lightweight, easy to use

Mountebank
HTTP, HTTPS, TCP,
SMTP

Multi-protocol service
virtualization

Supports multiple protocols

Hoverfly HTTP, HTTPS
Simulates and captures API
calls

Focused on API performance testing

MockServer HTTP, HTTPS
API mocking and request
verification

Supports complex request-response
behavior

Table 9. Comparison of CI/CD Tools for Microservices Testing

Tool
Name

Key Features Pros Cons

Jenkins Open source, extensive plugins Highly customizable Can be complex to configure

GitLab CI
Integrated with GitLab, YAML
pipelines

Seamless integration with
GitLab

Limited flexibility compared to
Jenkins

CircleCI Cloud-native, easy configuration Fast, cloud-based Limited on-premises options

Travis CI
Simple configuration, GitHub
integration

Easy setup for GitHub
projects

Limited support for other
version control

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

88 | P a g e
International Journal of Informatics Technology (INJIT)

Table 10. Tools for Microservices Performance Testing

Tool
Name

Key Features Pros Cons

JMeter
Open source, widely used, supports
multiple protocols

Strong community
support

High resource usage for
large tests

Gatling Focus on high-load testing, Scala-based
Efficient, high
performance

Learning curve for Scala
scripting

Locust Python-based, distributed load testing Easy to script, scalable Limited protocol support

K6
JavaScript-based, modern load testing
tool

Easy scripting, developer-
friendly

Limited GUI for beginners

Table 11. Microservices Testing in CI/CD Pipeline

Stage Activities Tools Benefits

Code
Commit

Trigger unit and integration tests Jenkins, GitLab CI, CircleCI Early detection of defects

Build
Run container build tests, security
scans

Docker, Jenkins, Snyk Verifies build integrity

Deployment
Conduct canary releases, smoke
tests

Kubernetes, Helm, Jenkins
X

Minimizes production risk

Monitoring
Real-time service monitoring, log
analysis

Prometheus, ELK Stack,
Grafana

Detects issues in production
early

Table 12. Strategies for Managing Test Data in Microservices

Strategy Description Benefits Challenges

Data Virtualization
Provides virtualized data
sets for testing

Reduces test environment
dependencies

Data accuracy

Synthetic Data
Generation

Generates artificial data for
testing purposes

Ensures privacy and
compliance

Data representativeness

Data Anonymization
Removes sensitive data
before testing

Maintains data privacy
Complexity in preserving
data structure

Table 13. Impact of Microservices on Test Automation Strategies

Impact Area Traditional vs. Microservices Testing Key Differences

Test Scope Monolithic applications test whole systems Microservices test individual services

Test Execution Sequential testing Parallel, independent service testing

Test Maintenance Less frequent updates required Frequent updates due to multiple services

Test Environments Single environment for testing Multiple, isolated environments required

Table 14. Emerging Trends in Microservices Test Automation

Trend Description

Containerized Testing Running tests within containers for consistency

Service Mesh Testing Utilizing service mesh for secure and reliable service interactions testing

Chaos Engineering Introducing controlled failures to test system resilience

AI-Powered Test Optimization Leveraging AI to optimize test cases and coverage

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

89 | P a g e
International Journal of Informatics Technology (INJIT)

Table 15. Best Practices for Test Automation Frameworks in Microservices

Practice Name Description

Modular Test Design Create independent test modules for services

Use of Mock Servers Simulate service responses to test isolated components

Maintain Backward Compatibility Ensure new versions of services do not break existing tests

Centralized Test Reporting Aggregate test results from different services

Automate Test Environment Setup Use Infrastructure as Code (IaC) for consistent environments

Test automation in microservices is a crucial practice for maintaining high-quality software in fast-paced

development environments. By adopting the right strategies, utilizing appropriate tools, and following best

practices, organizations can successfully automate their testing processes and ensure reliable, scalable, and

resilient microservices architectures. Future research should focus on enhancing the automation frameworks

and integrating AI-driven testing tools for more intelligent test case generation and failure prediction.

4. Conclusion

Test automation in a microservices architecture is a complex yet crucial undertaking. The distributed

nature of microservices, with their independent deployment cycles and numerous inter-service

communications, demands a robust and comprehensive testing strategy. The implementation of multiple

testing levels—ranging from unit to contract testing—ensures that each service and their interactions are

reliable, performant, and adhere to defined contracts.

Tools like JUnit, Pact, Selenium, and WireMock offer specific capabilities for different types of testing,

while strategies such as service virtualization, consumer-driven contracts, and shift-left testing help mitigate

common challenges in microservices testing. However, the unique requirements of microservices necessitate

adopting best practices like maintaining a test automation pyramid, leveraging service virtualization, and

integrating testing into continuous deployment pipelines.

By understanding the various facets of automated testing in a microservices environment, QA

professionals and developers can develop effective strategies to ensure robust and high-quality software

releases. As the landscape of software development continues to evolve, staying ahead of trends such as AI-

driven testing, containerized testing, and chaos engineering will be vital for maintaining a competitive edge.

This article serves as a comprehensive guide to navigating the complexities of test automation in

microservices, ultimately enabling teams to deliver resilient and reliable software solutions.

References

[1] Munagandla, V. B., Vadde, B. C., & Dandyala, S. S. V. (2020). Cloud-Driven Data Integration for Enhanced

Learning Analytics in Higher Education LMS. Revista de Inteligencia Artificial en Medicina, 11(1), 279-299.

[2] Waseem, M., Liang, P., Márquez, G., & Di Salle, A. (2020, December). Testing microservices architecture-based

applications: A systematic mapping study. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC)

(pp. 119-128). IEEE.

[3] Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case

Study of ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 11(1), 422-439.

[4] Waseem, M., Liang, P., Shahin, M., Di Salle, A., & Márquez, G. (2021). Design, monitoring, and testing of

microservices systems: The practitioners’ perspective. Journal of Systems and Software, 182, 111061.

[5] Kathram, S. R., & Nersu, S. R. K. (2020). Adopting CICD Pipelines in Project Management Bridging the Gap

Between Development and Operations. Revista de Inteligencia Artificial en Medicina, 11(1), 440- 461.

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

90 | P a g e
International Journal of Informatics Technology (INJIT)

[6] Vadde, B. C., Munagandla, V. B., & Dandyala, S. S. V. (2021). Enhancing Research Collaboration in Higher

Education with Cloud Data Integration. International Journal of Machine Learning Research in Cybersecurity and

Artificial Intelligence, 12(1), 366385.

[7] Kathram, S. R., & Nersu, S. R. K. (2022). Effective Resource Allocation in Distributed Teams: Addressing the

Challenges of Remote Project Management. Revista de Inteligencia Artificial en Medicina, 13(1), 615-634.

[8] Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2021). Industry practices and challenges for the evolvability

assurance of microservices: An interview study and systematic grey literature review. Empirical Software

Engineering, 26, 1-39.

[9] Nersu, S. R. K., & Kathram, S. R. (2022). Harnessing Federated Learning for Secure Distributed ETL Pipelines.

Revista de Inteligencia Artificial en Medicina, 13(1), 592-615.

[10] Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2021). Industry practices and challenges for the evolvability

assurance of microservices: An interview study and systematic grey literature review. Empirical Software

Engineering, 26, 1-39.

[11] Mandaloju, N., kumar Karne, V., Srinivas, N., & Nadimpalli, S. V. (2021). Overcoming Challenges in Salesforce

Lightning Testing with AI Solutions. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1),

228-238.

[12] Muqorobin, M., & Rais, N. A. R. (2020, November). Analisis Peran Teknologi Sistem Informasi Dalam Pembelajaran

Kuliah Dimasa Pandemi Virus Corona. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 3, No. 1, pp.

157-168).

[13] Kothamali, P. R., & Banik, S. (2019). Leveraging Machine Learning Algorithms in QA for Predictive Defect Tracking

and Risk Management. International Journal of Advanced Engineering Technologies and Innovations, 1(4), 103-

120.

[14] Banik, S., & Kothamali, P. R. (2019). Developing an End-to-End QA Strategy for Secure Software: Insights from

SQA Management. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence,

10(1), 125-155.

[15] Kothamali, P. R., & Banik, S. (2019). Building Secure Software Systems: A Case Study on Integrating QA with

Ethical Hacking Practices. Revista de Inteligencia Artificial en Medicina, 10(1), 163-191.

[16] Kothamali, P. R., & Banik, S. (2019). The Role of Quality Assurance in Safeguarding Healthcare Software: A

Cybersecurity Perspective. Revista de Inteligencia Artificial en Medicina, 10(1), 192-228.

[17] Hannousse, A., & Yahiouche, S. (2021). Securing microservices and microservice architectures: A systematic

mapping study. Computer Science Review, 41, 100415.

[18] Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced

Engineering Technologies and Innovations, 1(2), 133-152.

[19] Koppanati, P. K. (2021). Automation Testing for Custom Insurance Quotation Engines Using Microservices

Architecture. Journal of Scientific and Engineering Research, 8(9), 326-332.

[20] Banik, S., Dandyala, S. S. M., & Nadimpalli, S. V. (2020). Introduction to Machine Learning in Cybersecurity.

International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 180-204.

[21] Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Introduction to Threat Detection in Cybersecurity.

International Journal of Advanced Engineering Technologies and Innovations, 1(2), 113- 132.

[22] Waseem, M., Liang, P., & Shahin, M. (2020). A systematic mapping study on microservices architecture in devops.

Journal of Systems and Software, 170, 110798.

[23] Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection.

International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.

[24] Banik, S., & Dandyala, S. S. M. (2021). Unsupervised Learning Techniques in Cybersecurity. Revista de Inteligencia

Artificial en Medicina, 12(1), 384-406.

[25] Lehtola, H. (2020). Effective migration of an automation system to microservice architecture (Master's thesis).

http://journal.uad.ac.id/index.php/JIFO/index

International Journal of Informatics Technology (INJIT)
Vol. 1., No. 3, October 2022
e-ISSN : 2985-9646
https://jurnal.amrillah.net/index.php/injit

http://journal.uad.ac.id/index.php/JIFO/index

91 | P a g e
International Journal of Informatics Technology (INJIT)

[26] Muqorobin, M., & Rais, N. A. R. (2020). Analysis of the role of information systems technology in lecture learning

during the corona virus pandemic. International Journal of Computer and Information System (IJCIS), 1(2), 47-51.

[27] Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de

Inteligencia Artificial en Medicina, 12(1), 358-383.

[28] Joselyne, M. I., Bajpai, G., & Nzanywayingoma, F. (2021, October). A systematic framework of application

modernization to microservice based architecture. In 2021 International Conference on Engineering and Emerging

Technologies (ICEET) (pp. 1-6). IEEE.

[29] Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Challenges in Applying ML to Cybersecurity. Revista de

Inteligencia Artificial en Medicina, 11(1), 214-256.

[30] Taibi, D., Lenarduzzi, V., & Pahl, C. (2020). Microservices anti-patterns: A taxonomy. Microservices: Science and

Engineering, 111-128.

[31] Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia

Artificial en Medicina, 13(1), 381-391.

[32] Muqorobin, M., Utomo, P. B., Nafi’Uddin, M., & Kusrini, K. (2019). Implementasi Metode Certainty Factor pada

Sistem Pakar Diagnosa Penyakit Ayam Berbasis Android. Creative Information Technology Journal, 5(3), 185-195.

[33] Eismann, S., Bezemer, C. P., Shang, W., Okanović, D., & van Hoorn, A. (2020, April). Microservices: A performance

tester's dream or nightmare?. In Proceedings of the ACM/SPEC international conference on performance

engineering (pp. 138-149).

[34] Muqorobin, M., Kusrini, K., Rokhmah, S., & Muslihah, I. (2020). Estimation System For Late Payment Of School

Tuition Fees. International Journal of Computer and Information System (IJCIS), 1(1), 1-6.

[35] Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced

Engineering Technologies and Innovations, 1(2), 133-152.

[36] Muqorobin, M., Hisyam, Z., Mashuri, M., Hanafi, H., & Setiyantara, Y. (2019). Implementasi Network Intrusion

Detection System (NIDS) Dalam Sistem Keamanan Open Cloud Computing. Majalah Ilmiah Bahari Jogja, 17(2), 1-

9.

[37] Ntentos, E., Zdun, U., Plakidas, K., & Geiger, S. (2021, March). Semi-automatic feedback for improving architecture

conformance to microservice patterns and practices. In 2021 IEEE 18th International Conference on Software

Architecture (ICSA) (pp. 36-46). IEEE.

[38] Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection.

International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.

[39] Muqorobin, M., Apriliyani, A., & Kusrini, K. (2019). Sistem Pendukung Keputusan Penerimaan Beasiswa dengan

Metode SAW. Respati, 14(1).

[40] Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de

Inteligencia Artificial en Medicina, 12(1), 358-383.

[41] Ribeiro, A. (2021). Invariant-Driven Automated Testing (Doctoral dissertation, Master’s thesis, Universidade Nova

de Lisboa, Lisboa).

[42] Muqorobin, M., Kusrini, K., & Luthfi, E. T. (2019). Optimasi Metode Naive Bayes Dengan Feature Selection

Information Gain Untuk Prediksi Keterlambatan Pembayaran Spp Sekolah. Jurnal Ilmiah SINUS, 17(1), 1-14.

[43] Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia

Artificial en Medicina, 13(1), 381-391.

[44] Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021). From monolithic systems to microservices: An assessment

framework. Information and Software Technology, 137, 106600.

[45] Kothamali, P. R., Mandaloju, N., & Dandyala, S. S. M. (2022). Optimizing Resource Management in Smart Cities

with AI. Unique Endeavor in Business & Social Sciences, 1(1), 174-191.

https://unbss.com/index.php/unbss/article/view/54

http://journal.uad.ac.id/index.php/JIFO/index

