Test Automation in Microservices Architecture with AI: Strategies, Tools, and Best Practices
Abstract
Full Text:
PDFReferences
Munagandla, V. B., Vadde, B. C., & Dandyala, S. S. V. (2020). Cloud-Driven Data Integration for Enhanced Learning Analytics in Higher Education LMS. Revista de Inteligencia Artificial en Medicina, 11(1), 279-299.
Waseem, M., Liang, P., Márquez, G., & Di Salle, A. (2020, December). Testing microservices architecture-based applications: A systematic mapping study. In 2020 27th Asia-Pacific Software Engineering Conference (APSEC) (pp. 119-128). IEEE.
Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case Study of ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 11(1), 422-439.
Waseem, M., Liang, P., Shahin, M., Di Salle, A., & Márquez, G. (2021). Design, monitoring, and testing of microservices systems: The practitioners’ perspective. Journal of Systems and Software, 182, 111061.
Kathram, S. R., & Nersu, S. R. K. (2020). Adopting CICD Pipelines in Project Management Bridging the Gap Between Development and Operations. Revista de Inteligencia Artificial en Medicina, 11(1), 440- 461.
Vadde, B. C., Munagandla, V. B., & Dandyala, S. S. V. (2021). Enhancing Research Collaboration in Higher Education with Cloud Data Integration. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 366385.
Kathram, S. R., & Nersu, S. R. K. (2022). Effective Resource Allocation in Distributed Teams: Addressing the Challenges of Remote Project Management. Revista de Inteligencia Artificial en Medicina, 13(1), 615-634.
Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2021). Industry practices and challenges for the evolvability assurance of microservices: An interview study and systematic grey literature review. Empirical Software Engineering, 26, 1-39.
Nersu, S. R. K., & Kathram, S. R. (2022). Harnessing Federated Learning for Secure Distributed ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 13(1), 592-615.
Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2021). Industry practices and challenges for the evolvability assurance of microservices: An interview study and systematic grey literature review. Empirical Software Engineering, 26, 1-39.
Mandaloju, N., kumar Karne, V., Srinivas, N., & Nadimpalli, S. V. (2021). Overcoming Challenges in Salesforce Lightning Testing with AI Solutions. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 228-238.
Muqorobin, M., & Rais, N. A. R. (2020, November). Analisis Peran Teknologi Sistem Informasi Dalam Pembelajaran Kuliah Dimasa Pandemi Virus Corona. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 3, No. 1, pp. 157-168).
Kothamali, P. R., & Banik, S. (2019). Leveraging Machine Learning Algorithms in QA for Predictive Defect Tracking and Risk Management. International Journal of Advanced Engineering Technologies and Innovations, 1(4), 103-120.
Banik, S., & Kothamali, P. R. (2019). Developing an End-to-End QA Strategy for Secure Software: Insights from SQA Management. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 10(1), 125-155.
Kothamali, P. R., & Banik, S. (2019). Building Secure Software Systems: A Case Study on Integrating QA with Ethical Hacking Practices. Revista de Inteligencia Artificial en Medicina, 10(1), 163-191.
Kothamali, P. R., & Banik, S. (2019). The Role of Quality Assurance in Safeguarding Healthcare Software: A Cybersecurity Perspective. Revista de Inteligencia Artificial en Medicina, 10(1), 192-228.
Hannousse, A., & Yahiouche, S. (2021). Securing microservices and microservice architectures: A systematic mapping study. Computer Science Review, 41, 100415.
Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 133-152.
Koppanati, P. K. (2021). Automation Testing for Custom Insurance Quotation Engines Using Microservices Architecture. Journal of Scientific and Engineering Research, 8(9), 326-332.
Banik, S., Dandyala, S. S. M., & Nadimpalli, S. V. (2020). Introduction to Machine Learning in Cybersecurity. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 180-204.
Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Introduction to Threat Detection in Cybersecurity. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 113- 132.
Waseem, M., Liang, P., & Shahin, M. (2020). A systematic mapping study on microservices architecture in devops. Journal of Systems and Software, 170, 110798.
Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.
Banik, S., & Dandyala, S. S. M. (2021). Unsupervised Learning Techniques in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 384-406.
Lehtola, H. (2020). Effective migration of an automation system to microservice architecture (Master's thesis).
Muqorobin, M., & Rais, N. A. R. (2020). Analysis of the role of information systems technology in lecture learning during the corona virus pandemic. International Journal of Computer and Information System (IJCIS), 1(2), 47-51.
Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 358-383.
Joselyne, M. I., Bajpai, G., & Nzanywayingoma, F. (2021, October). A systematic framework of application modernization to microservice based architecture. In 2021 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1-6). IEEE.
Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Challenges in Applying ML to Cybersecurity. Revista de Inteligencia Artificial en Medicina, 11(1), 214-256.
Taibi, D., Lenarduzzi, V., & Pahl, C. (2020). Microservices anti-patterns: A taxonomy. Microservices: Science and Engineering, 111-128.
Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia Artificial en Medicina, 13(1), 381-391.
Muqorobin, M., Utomo, P. B., Nafi’Uddin, M., & Kusrini, K. (2019). Implementasi Metode Certainty Factor pada Sistem Pakar Diagnosa Penyakit Ayam Berbasis Android. Creative Information Technology Journal, 5(3), 185-195.
Eismann, S., Bezemer, C. P., Shang, W., Okanović, D., & van Hoorn, A. (2020, April). Microservices: A performance tester's dream or nightmare?. In Proceedings of the ACM/SPEC international conference on performance engineering (pp. 138-149).
Muqorobin, M., Kusrini, K., Rokhmah, S., & Muslihah, I. (2020). Estimation System For Late Payment Of School Tuition Fees. International Journal of Computer and Information System (IJCIS), 1(1), 1-6.
Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 133-152.
Muqorobin, M., Hisyam, Z., Mashuri, M., Hanafi, H., & Setiyantara, Y. (2019). Implementasi Network Intrusion Detection System (NIDS) Dalam Sistem Keamanan Open Cloud Computing. Majalah Ilmiah Bahari Jogja, 17(2), 1-9.
Ntentos, E., Zdun, U., Plakidas, K., & Geiger, S. (2021, March). Semi-automatic feedback for improving architecture conformance to microservice patterns and practices. In 2021 IEEE 18th International Conference on Software Architecture (ICSA) (pp. 36-46). IEEE.
Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.
Muqorobin, M., Apriliyani, A., & Kusrini, K. (2019). Sistem Pendukung Keputusan Penerimaan Beasiswa dengan Metode SAW. Respati, 14(1).
Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 358-383.
Ribeiro, A. (2021). Invariant-Driven Automated Testing (Doctoral dissertation, Master’s thesis, Universidade Nova de Lisboa, Lisboa).
Muqorobin, M., Kusrini, K., & Luthfi, E. T. (2019). Optimasi Metode Naive Bayes Dengan Feature Selection Information Gain Untuk Prediksi Keterlambatan Pembayaran Spp Sekolah. Jurnal Ilmiah SINUS, 17(1), 1-14.
Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia Artificial en Medicina, 13(1), 381-391.
Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021). From monolithic systems to microservices: An assessment framework. Information and Software Technology, 137, 106600.
Kothamali, P. R., Mandaloju, N., & Dandyala, S. S. M. (2022). Optimizing Resource Management in Smart Cities with AI. Unique Endeavor in Business & Social Sciences, 1(1), 174-191. https://unbss.com/index.php/unbss/article/view/54
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.

