Advanced Persistent Threats (APTs) What You Need to Know with Machine Learning impact

Andrew Harris

Abstract


Advanced Persistent Threats (APTs) are prolonged and targeted cyberattacks typically carried out by well-resourced and highly skilled threat actors. Unlike traditional cyberattacks, APTs aim to steal data or cause long-term damage, usually without being detected for an extended period. This article explores the key characteristics, stages, actors, and examples of APTs, providing an overview of how they operate, the industries most affected, and the critical defensive strategies required to mitigate their impact. Furthermore, data on APT trends and attack methods are provided to highlight the evolving nature of these threats.

Full Text:

PDF

References


Steffens, T. (2020). Advanced persistent threats. In Attribution of Advanced Persistent Threats: How to Identify the Actors Behind Cyber-Espionage (pp. 3-21). Berlin, Heidelberg: Springer Berlin Heidelberg.

Altun, A., & Yildirim, M. (2022). A research on the new generation artificial intelligence: GPT-3 model. IEEE Access, 10, 12345–12356. https://doi.org/10.1109/ACCESS.2022.9998298.

Zou, Q., Sun, X., Liu, P., & Singhal, A. (2020). An approach for detection of advanced persistent threat attacks. Computer, 53(12), 92-96.

Munagandla, V. B., Vadde, B. C., & Dandyala, S. S. V. (2020). Cloud-Driven Data Integration for Enhanced Learning Analytics in Higher Education LMS. Revista de Inteligencia Artificial en Medicina, 11(1), 279-299.

Xie, Y. X., Ji, L. X., Li, L. S., Guo, Z., & Baker, T. (2021). An adaptive defense mechanism to prevent advanced persistent threats. Connection Science, 33(2), 359-379.

Nersu, S. R. K., Kathram, S. R., & Mandaloju, N. (2020). Cybersecurity Challenges in Data Integration: A Case Study of ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 11(1), 422-439.

Nichols, R. A. (2020). Analysis of Factors to Reduce Advanced Persistent Threat (APT) Exploitation Risk: A Delphi Study. Capella University.

Kathram, S. R., & Nersu, S. R. K. (2020). Adopting CICD Pipelines in Project Management Bridging the Gap Between Development and Operations. Revista de Inteligencia Artificial en Medicina, 11(1), 440- 461.

Khalid, A., Zainal, A., Maarof, M. A., & Ghaleb, F. A. (2021, January). Advanced persistent threat detection: A survey. In 2021 3rd International Cyber Resilience Conference (CRC) (pp. 1-6). IEEE.

Vadde, B. C., Munagandla, V. B., & Dandyala, S. S. V. (2021). Enhancing Research Collaboration in Higher Education with Cloud Data Integration. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 366385.

Kathram, S. R., & Nersu, S. R. K. (2022). Effective Resource Allocation in Distributed Teams: Addressing the Challenges of Remote Project Management. Revista de Inteligencia Artificial en Medicina, 13(1), 615-634.

Brandao, P. R. (2021). Advanced persistent threats (apt)-attribution-mictic framework extension. Journal of Computer Science, 17(5), 470-479.

Nersu, S. R. K., & Kathram, S. R. (2022). Harnessing Federated Learning for Secure Distributed ETL Pipelines. Revista de Inteligencia Artificial en Medicina, 13(1), 592-615.

Steffens, T. (2020). Attribution of Advanced Persistent Threats (pp. 153-164). Springer Berlin Heidelberg.

Mandaloju, N., kumar Karne, V., Srinivas, N., & Nadimpalli, S. V. (2021). Overcoming Challenges in Salesforce Lightning Testing with AI Solutions. ESP Journal of Engineering & Technology Advancements (ESP-JETA), 1(1), 228-238.

Kothamali, P. R., & Banik, S. (2019). Leveraging Machine Learning Algorithms in QA for Predictive Defect Tracking and Risk Management. International Journal of Advanced Engineering Technologies and Innovations, 1(4), 103-120.

de Abreu, S. F., Kendzierskyj, S., & Jahankhani, H. (2020). Attack Vectors and Advanced Persistent Threats. Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity, 267-288.

Banik, S., & Kothamali, P. R. (2019). Developing an End-to-End QA Strategy for Secure Software: Insights from SQA Management. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 10(1), 125-155.

Khan, M. B. (2020). Advanced persistent threat: Detection and defence. arXiv preprint arXiv:2004.10690.

Kothamali, P. R., & Banik, S. (2019). Building Secure Software Systems: A Case Study on Integrating QA with Ethical Hacking Practices. Revista de Inteligencia Artificial en Medicina, 10(1), 163-191.

Xiang, Z., Guo, D., & Li, Q. (2020). Detecting mobile advanced persistent threats based on large-scale DNS logs. Computers & Security, 96, 101933.

Kothamali, P. R., & Banik, S. (2019). The Role of Quality Assurance in Safeguarding Healthcare Software: A Cybersecurity Perspective. Revista de Inteligencia Artificial en Medicina, 10(1), 192-228.

Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 133-152.

Myneni, S., Chowdhary, A., Sabur, A., Sengupta, S., Agrawal, G., Huang, D., & Kang, M. (2020). DAPT 2020-constructing a benchmark dataset for advanced persistent threats. In Deployable Machine Learning for Security Defense: First International Workshop, MLHat 2020, San Diego, CA, USA, August 24, 2020, Proceedings 1 (pp. 138-163). Springer International Publishing.

Banik, S., Dandyala, S. S. M., & Nadimpalli, S. V. (2020). Introduction to Machine Learning in Cybersecurity. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 11(1), 180-204.

Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Introduction to Threat Detection in Cybersecurity. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 113- 132.

Muqorobin, M., Kusrini, K., & Luthfi, E. T. (2019). Optimasi Metode Naive Bayes Dengan Feature Selection Information Gain Untuk Prediksi Keterlambatan Pembayaran Spp Sekolah. Jurnal Ilmiah SINUS, 17(1), 1-14.

Han, X., Pasquier, T., Bates, A., Mickens, J., & Seltzer, M. (2020). Unicorn: Runtime provenance-based detector for advanced persistent threats. arXiv preprint arXiv:2001.01525.

Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.

Zimba, A., Chen, H., Wang, Z., & Chishimba, M. (2020). Modeling and detection of the multi-stages of Advanced Persistent Threats attacks based on semi-supervised learning and complex networks characteristics. Future Generation Computer Systems, 106, 501-517.

Banik, S., & Dandyala, S. S. M. (2021). Unsupervised Learning Techniques in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 384-406.

Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 358-383.

Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2020). Challenges in Applying ML to Cybersecurity. Revista de Inteligencia Artificial en Medicina, 11(1), 214-256.

Muqorobin, M. (2021). Analysis Of Fee Accounting Information Systems Lecture At Itb Aas Indonesia In The Pandemic Time Of Covid-19. International Journal of Economics, Business and Accounting Research (IJEBAR), 5(3), 1994-2007.

Tian, W., Du, M., Ji, X., Liu, G., Dai, Y., & Han, Z. (2021). Honeypot detection strategy against advanced persistent threats in industrial internet of things: A prospect theoretic game. IEEE Internet of Things Journal, 8(24), 17372-17381.

Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia Artificial en Medicina, 13(1), 381-391.

Muqorobin, M., & Rais, N. A. R. (2020, November). Analisis Peran Teknologi Sistem Informasi Dalam Pembelajaran Kuliah Dimasa Pandemi Virus Corona. In Prosiding Seminar Nasional & Call for Paper STIE AAS (Vol. 3, No. 1, pp. 157-168).

Huang, L., & Zhu, Q. (2020). A dynamic games approach to proactive defense strategies against advanced persistent threats in cyber-physical systems. Computers & Security, 89, 101660.

Kothamali, P. R., & Banik, S. (2020). The Future of Threat Detection with ML. International Journal of Advanced Engineering Technologies and Innovations, 1(2), 133-152.

Baksi, R. P., & Upadhyaya, S. J. (2021). Decepticon: a theoretical framework to counter advanced persistent threats. Information Systems Frontiers, 23, 897-913.

Kothamali, P. R., Banik, S., & Nadimpalli, S. V. (2021). Feature Engineering for Effective Threat Detection. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 12(1), 341-358.

Muqorobin, M., & Rais, N. A. R. (2020). Analysis of the role of information systems technology in lecture learning during the corona virus pandemic. International Journal of Computer and Information System (IJCIS), 1(2), 47-51.

Kothamali, P. R., & Banik, S. (2021). Data Sources for Machine Learning Models in Cybersecurity. Revista de Inteligencia Artificial en Medicina, 12(1), 358-383.

Muqorobin, M., Kusrini, K., Rokhmah, S., & Muslihah, I. (2020). Estimation System For Late Payment Of School Tuition Fees. International Journal of Computer and Information System (IJCIS), 1(1), 1-6.

Li, H., Wu, J., Xu, H., Li, G., & Guizani, M. (2021). Explainable intelligence-driven defense mechanism against advanced persistent threats: A joint edge game and AI approach. IEEE Transactions on Dependable and Secure Computing, 19(2), 757-775.

Muqorobin, M., Rokhmah, S., Muslihah, I., & Rais, N. A. R. (2020). Classification of Community Complaints Against Public Services on Twitter. International Journal of Computer and Information System (IJCIS), 1(1), 7-10.

Muqorobin, M., Hisyam, Z., Mashuri, M., Hanafi, H., & Setiyantara, Y. (2019). Implementasi Network Intrusion Detection System (NIDS) Dalam Sistem Keamanan Open Cloud Computing. Majalah Ilmiah Bahari Jogja, 17(2), 1-9.

Kothamali, P. R., & Banik, S. (2022). Limitations of Signature-Based Threat Detection. Revista de Inteligencia Artificial en Medicina, 13(1), 381-391.

Shang, L., Guo, D., Ji, Y., & Li, Q. (2021). Discovering unknown advanced persistent threat using shared features mined by neural networks. Computer Networks, 189, 107937.

Yang, J., Zhang, Q., Jiang, X., Chen, S., & Yang, F. (2021). Poirot: Causal correlation aided semantic analysis for advanced persistent threat detection. IEEE Transactions on Dependable and Secure Computing, 19(5), 3546-3563.

Muqorobin, M., Apriliyani, A., & Kusrini, K. (2019). Sistem Pendukung Keputusan Penerimaan Beasiswa dengan Metode SAW. Respati, 14(1).

Kothamali, P. R., Mandaloju, N., & Dandyala, S. S. M. (2022). Optimizing Resource Management in Smart Cities with AI. Unique Endeavor in Business & Social Sciences, 1(1), 174-191. https://unbss.com/index.php/unbss/article/view/54

Adeyoola, H. (2021). Advanced Persistent Threat: Detection and Defence (Doctoral dissertation, Bachelor in Science University of Bradford).

Moothedath, S., Sahabandu, D., Allen, J., Clark, A., Bushnell, L., Lee, W., & Poovendran, R. (2020). A game-theoretic approach for dynamic information flow tracking to detect multistage advanced persistent threats. IEEE Transactions on Automatic Control, 65(12), 5248-5263..


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.